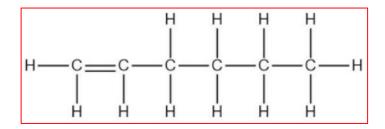
Nom:	 • • • •	•••	• • •	••	 ••	• • •	 	•	 • •	٠.	 •	 	٠.	 •
Prénom ·														

Année académique 2025-2026 Interrogation écrite	Cursus TLM Bloc 1– Q1 UE1 LM02 Sciences chimiques	Date : Octobre 2025 /50
La matière, nomenclature minérale, nomenclature organique, Lewis- liaisons-géométrie-polarité	Enseignantes : L. Denil, MF Ghuysen	Classe : 1°TLM Groupe : tous

1. Nombre d'oxydation. Compléter le tableau suivant (/2) :

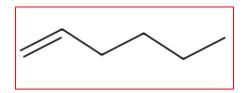
C dans HCOOH	S dans Na ₂ SO ₄	P dans Al₂(HPO₄)₃	N dans N ₂ O ₄
+2	+6	+5	+4


2. Nomenclature. Compléter le tableau suivant (/4) :

Nom	Formule chimique
Hydrogénosulfite de sodium	NaHSO₃
Sulfate d'ammonium	(NH ₄) ₂ SO ₄
Hémiheptoxyde de phosphore	P ₂ O ₇
Nitrate de cuivre (II)	Cu(NO ₃) ₂

3. Formules et représentations (/6)

On considère le composé : C_6H_{12} .


1. Dessiner la formule **développée** d'une molécule linéaire (sans ramification) qui correspond à cet alcène.

Prénom:....

2. Donner la formule **semi-développée** de ce même composé.

3. Donner la formule **topologique** de ce même composé.

4. Proposer une autre molécule ramifiée qui peut correspondre à la même formule brute et au nom : 2-méthylpent-1-ène. Donner sa formule développée.

4. Nommer des hydrocarbures organiques (/5)

Donner le **nom IUPAC correct** pour chacun des composés suivants :

Pent-2-ène

b) $CH \equiv C - CH_2 - CH_3$

But-1-yne

c) (CH₃)₂CH–CH₂–CH₃ 2-méthylbutane

,

3-méthylpent-2-ène

- e) $(CH_3)_3C-CH_2-CH_3$ 2,2-diméthylbutane
- 5. Écrire la formule semi-développée des composés suivants (/4) :
- a) 3-méthylpentane
- b) 2,3-diméthylbutane
- c) Hex-2-yne
- d) Buta-1,3-diène

Prénom:....

a) 3-méthylpentane

CH3-CH2-CH(CH3)-CH2-CH3

b) 2,3-diméthylbutane

CH3-CH(CH3)-CH(CH3)-CH3

c) hex-2-yne

CH3-C≡C-CH2-CH2-CH3

d) buta-1,3-diène

CH2=CH-CH=CH2

6. Identification des fonctions (formules topologiques) (/3)

Pour chacune des structures ci-dessous, indiquer la/les fonction(s) organique(s) principale((s) et nommer la/les.

a)

Fonction principale: alcool

b)

• Fonctions principales : acide carboxylique et amine

c)

• Fonctions principales : cétone et alcène

Nom:	
Prénor	n :
7.	Classer les exemples suivants dans la bonne catégorie : corps simple, corps composé, mélange homogène, mélange hétérogène. (/3)
	Dioxygène (O_2) , eau salée, dioxyde de carbone (CO_2) .
	Corps simple : O_2 Corps composé : CO_2 Mélange homogène : eau salée
8.	On considère deux isotopes du carbone : ¹² C et ¹⁴ C Expliquer pourquoi ce sont des isotopes et indiquer ce qui les différencie. (/3) Ce sont des isotopes car ils appartiennent au même élément (même nombre de
	protons : Z = 6). La différence réside dans le nombre de neutrons (6 pour le carbone-12 et 8 pour le carbone-14).
9.	Quel est le numéro atomique, le nombre de nucléons et le nombre d'électrons de cet ion calcium ${}^{40}_{20}Ca^{2+}$? (/3) Z = 20 (nombre de protons). A = 40 (protons + neutrons). Et 18 électrons (20-2)
10	 Complète chaque description : (/3) a) Une substance qui ne peut pas être décomposée en plus simple, c'est

Nom	: .	• • •	••	 	 ٠.	•	٠.	•	•	٠.	 • •	•	٠.	 •	 	•	٠.	• •	 •	 	•		٠.	•	٠.	
Prén	om	ı :		 	 									 												

11.

a) Donner la structure de Lewis (2D) des molécules suivantes. (/3)

CHCI3 # (c - Tel	NH4+ + + + + + + + + + + + + + + + + + +	N₂O₃ (les 2 N sont liés)
HNO ₃ 101 101 HOO	C ₂ H ₂ H — C ≡ C – H	Na ₂ SO ₄ (0, 10) Na+ Na+ Na+

b) Donner les nombres et noms des liaisons des molécules suivantes. (/3)

CHCl₃	NH ₄ ⁺	N₂O₃ (les 2 N sont liés)
4 LCNPol.	3 LCNPol.	1 LCNParfaite
	1 LCDCoordinative	4LCNPol.
		1LCDSemi-pol.
HNO₃	C ₂ H ₂	Na ₂ SO ₄
4 LCNPol.	3LCNParfaites	2 LI
1 LCDSemi-pol.	2 LCNPol.	2 LCNPol.
		2 LCDSemi-pol.

c) Donner les **nom et symbole (type AXmEn) de la géométrie** des molécules suivantes. **(/3)**

CHCl₃	NH ₄ ⁺	N₂O₃ (les 2 N sont liés)
AX₄ tétraédrique	AX₄ tétraédrique	AX₃ triangulaire
		AX₂E coudée

Nom	:	 ••	••	٠.	•	٠.	•	•	 •	•	•	 		•	•	 			•	•	 •		•			•	
D /																											

HNO ₃	C ₂ H ₂	Na ₂ SO ₄
AX ₃ triangulaire	AX ₂ linéaire	AX ₄ tétraédrique (SO ₄ ²⁻)

d) A l'aide de l'électronégativité, représente les **molécules en 3D** avec les incréments de charges δ + et δ - ainsi qu'avec les charges unitaires. **(/3)**

CHCl ₃	NH4+	N ₂ O ₃ (les 2 N sont liés) 28 N − N 48 +
HNO3 28- 101 155+ 25- N 26- 16+ 16+ 16+ 16- 16- 16- 16- 1	$C_{2}H_{2}$ $H - C = C - H$ $\delta^{+} \delta^{-} \delta^{-} \delta^{+}$	Na ₂ SO ₄ 28-7 5 0 5- 10,8- 0 5- Not Not

e) Précise si la molécule en 3D est **polaire ou non** et justifie (si besoin en indiquant le bilan des charges par un signe \bigoplus et \bigoplus à l'endroit requis sur la structure 3D). (/3)

CHCl₃ H	NH4+ + done polari	N₂O₃ (les 2 N <u>sont liés</u>)
1d, 14 d	9	poloire
HNO ₃	C ₂ H ₂ H - C = C - +1	Na ₂ SO ₄ ions => polarie
polorie	Spolarie	