

Connaître et caractériser les grandes familles d'hydrocarbures

Maîtriser les différentes représentations en 2D des molécules en chimie organique

Nommer les hydrocarbures selon les règles d'usage sur base d'une représentation donnée (et vice versa) Identifier et nommer les groupes fonctionnels présents sur une molécule organique représentée (et vice versa)

Tout ce que tu vois sur la photo est fait de chimie organique

A quelques exceptions près, les composés organiques contiennent au moins 1 atome de C

Allons un peu plus loin....

La plupart des substances organiques sont construites au départ de quelques atomes comme le carbone (C), l'hydrogène (H), l'oxygène (O) et l'azote (N) + qqs métaux et non-métaux

L'atome de carbone est *tétravalent* (4 liaisons)
L'atome d'hydrogène est *monovalent* (1 liaison)
L'atome d'oxygène est *bivalent* (2 liaisons)
L'atome d'azote est *trivalent* (3 liaisons)

On représente une liaison simple par un trait horizontal (-), une liaison double par deux traits horizontaux parallèles (=) et une liaison triple par trois traits horizontaux parallèles (≡)

Les hydrocarbures avec des liaisons simples uniquement sont des alcanes. On les dit saturés.

FG: **C**_n**H**_{2n+2} (alcane linéaire)

Les hydrocarbures:

formés uniquement de C et de H; ils peuvent être à chaîne ouverte* ou cycliques Les **alcènes** possèdent au moins une **liaison double** entre deux atomes de C.

FG: **C**_n**H**_{2n} (alcène linéaire, UNE liaison double)

Les **alcynes** possèdent au moins une **liaison triple** entre deux atomes de C.

FG: **C**_n**H**_{2n-2} (alcyne linéaire, UNE liaison triple)

Les aromatiques
possèdent au moins un
cycle, chaque cycle fait de
liaisons doubles
conjuguées

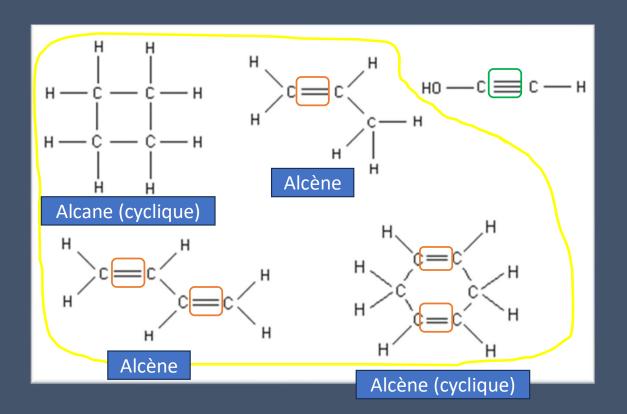
Exercice

Parmi les composés suivants:

- repère les hydrocarbures; - indique les liaisons multiples (doubles et triples); - classe les hydrocarbures en alcanes, alcènes,

alcynes ou

autres.


Solution

Parmi les composés suivants:

- repère les hydrocarbures;

- indique les liaisons multiples (doubles et triples).

- classe les hydrocarbures en alcanes, alcènes, alcynes ou autres.

Ecriture* des molécules en chimie organique

1. La formule brute (FB) ou moléculaire

La formule brute d'une molécule indique la nature et le nombre des atomes qui la constituent.

Chaque atome est représenté par son symbole chimique et le nombre de fois que l'atome apparaît dans la molécule est indiqué en indice à droite du symbole.

Règle d'écriture: C_xH_y suivi des autres atomes dans l'ordre alphabétique

Molécule	Ethanol	Urée	Méthionine	Chloral
Formule brute	C ₂ H ₆ O	CH ₄ N ₂ O	$C_5H_{11}NO_2S$	C ₂ HCl ₃ O

^{*} Uniquement en 2D dans le cadre de ce cours.

Ecriture des molécules en chimie organique

2. La formule développée

La formule développée d'une molécule indique l'enchaînement des atomes qui la constituent.

Chaque atome est représenté par son symbole chimique et **toutes les liaisons** entre les atomes sont représentées par des traits.

Molécule	Ethanol	Urée	Urée Méthionine Ch	
Formule brute	C_2H_6O	CH ₄ N ₂ O	C ₅ H ₁₁ NO ₂ S	C ₂ HCl ₃ O
Formule développée	H H	H_N_C_N_H H H	H H H H O - H C - S - C - C - C - C - O - H H H N - H H	CI CI H

Ecriture des molécules en chimie organique

3. La formule semi-développée

La formule semi-développée d'une molécule indique **l'enchaînement des atomes** qui la constituent.

Les **liaisons C-H** ne sont **PAS représentées**. Le nombre d'atomes d'hydrogène est précisé par un indice à droite du symbole H.

Les liaisons entre atomes de C ou tout autre atome que H doivent figurer.

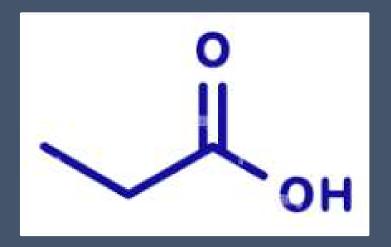
Molécule	Ethanol (C ₂ H ₆ O)	Urée (CH ₄ N ₂ O)	Méthionine (C ₅ H ₁₁ NO ₂ S)	Chloral (C ₂ HCl ₃ O)
Formule développée	H H H—C—C—O—H H H	H	H H H H O 	CI CI H
Formule semi- développée	CH ₃ -CH ₂ -OH	O 	Н ₃ С—S—СН ₂ —СН ₂ —СН—С—ОН NH ₂	CI CI CI

Ecriture des molécules en chimie organique

4. La formule topologique ou simplifiée (en tirets ou zigzags) = LA PLUS UTILISÉE

On dessine les liaisons uniquement $(-, =, \equiv)$; les atomes de C et les atomes d'H qui leur sont liés ne sont PAS représentés.

Conventions:


- atomes de C occupent les extrémités libres des segments (liaisons) ou leur intersection
- uniquement les hétéroatomes (= autres que C et H) sont indiqués
- C tétravalent => on complète en pensée par les liaisons C-H manquantes

Molécule	Ethanol (C ₂ H ₆ O)	Urée (CH ₄ N ₂ O)	Méthionine (C ₅ H ₁₁ NO ₂ S)	Chloral (C ₂ HCl ₃ O)
Formule semi- développée	CH ₃ -CH ₂ -OH	O C NH ₂	$\begin{array}{c} \mathbf{H_{3}C-S-CH_{2}-CH_{2}-CH-C-OH} \\ \mathbf{NH_{2}} \end{array}$	CI CI CI
Formule topologique	ОН	H ₂ N NH ₂	S OH NH ₂	CI CI

1. Déterminer la formule brute des composés suivants :

2. Déterminer la formule brute des composés suivants :

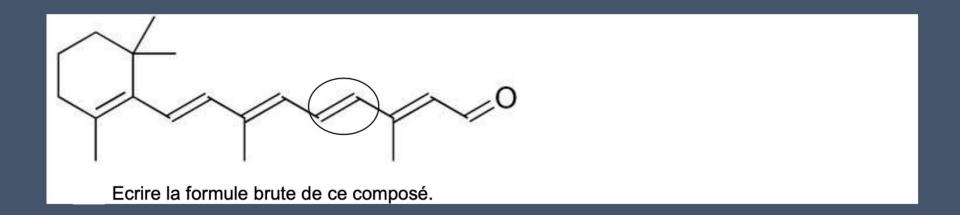
2. Dessiner les formules développée et semi-développée et déterminer la formule brute de l'acide propanoïque :

2. Dessiner les formules développée et semi-développée et déterminer la formule brute de l'acide propanoïque :

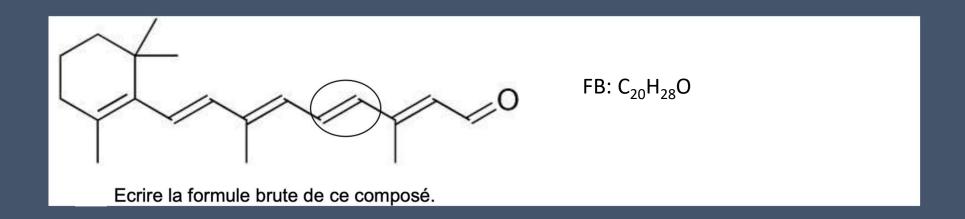
Formule topologique	Formule développée	Formule semi-développée	Formule brute
ОН	H H O I II H-C-C-C-O-H H H	СН ₃ —СН ₂ —С	C ₃ H ₆ O ₂

3. Compléter le tableau suivant :

Formule brute	Formule semi-développée	Ecriture topologique
	$\begin{array}{c c} \mathbf{CH}_{\overline{3}} & \mathbf{CH}_{\overline{2}} & \mathbf{CH}_{\overline{2}} & \mathbf{CH}_{\overline{2}} & \mathbf{CH}_{\overline{3}} \\ & & & \\ & $	
		O — O — O

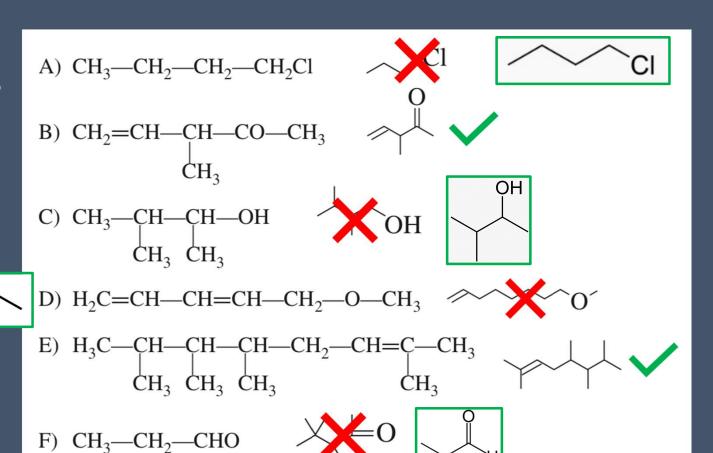

Correction		
Formule brute	Formule semi-développée	Ecriture topologique
C ₆ H ₁₄	$\begin{array}{c c} \mathbf{CH}_{\overline{3}} & \mathbf{CH}_{\overline{2}} & \mathbf{CH}_{\overline{2}} & \mathbf{CH}_{\overline{2}} \\ & & \\ & \mathbf{CH}_{\overline{3}} \end{array}$	
C₅H₁0	СН 3 СН − СН 3	
C ₁₀ H ₆ O ₃	O O C	OH O

4. Déterminer la formule moléculaire (brute) des composés suivants :

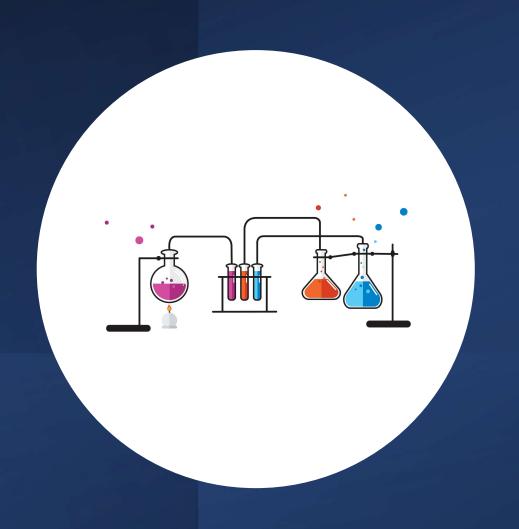

4. Déterminer la formule moléculaire (brute) des composés suivants :

$$C_{9}H_{20}$$
 $C_{13}H_{28}$
 $C_{13}H_{28}$
 $C_{13}H_{28}$

5. On donne l'écriture topologique du E-rétinal :



5. On donne l'écriture topologique du E-rétinal :



6. Les représentations schématiques simplifiées utilisées pour chacun des composés suivants sont-elles correctes ? Rectifier celles qui ne le seraient pas.

6. Les représentations schématiques simplifiées utilisées pour chacun des composés suivants sont-elles correctes ? Rectifier celles qui ne le seraient pas.

Nomenclature des hydrocarbures

Nomenclature des alcanes linéaires : Corps du nom + ane*

Nombre de C	1	2	3	4	5	6	7	8	9	10	11
Corps du nom	méth	éth	prop	but	pent	hex	hept	oct	non	déc	undéc

éthane	propane	butane
C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀
H – CH ₂ – CH ₂ - H	H – (CH ₂) ₃ - H	H – (CH ₂) ₄ - H

^{*} Préfixe cyclo- s'il s'agit d'un cyclane (= alcane à chaîne fermée).

Nombre n d'atomes de carbone	Formule brute	Préfixe	Nom	Formule semi-développée
1	CH ₄	méth-	méthane	CH ₄
2	C ₂ H ₆	éth-	éthane	CH ₃ -CH ₃
3	C ₃ H ₈	prop-	propane	CH ₃ -CH ₂ -CH ₃
4	C4H10	but-	butane	CH ₃ -CH ₂ -CH ₂ -CH ₃
5	C ₅ H ₁₂	pent-	pentane	CH ₃ -(CH ₂) ₃ -CH ₃
6	C ₆ H ₁₄	hex-	hexane	CH ₃ -(CH ₂) ₄ -CH ₃

Nomenclature des alcanes linéaires

Nomenclature des alcanes ramifiés

Vidéo:

Nomenclatures des alcanes ramifiés

Nomenclature des alcanes ramifiés

Préfixe: chaîne(s) latérale(s) Corps du nom: chaîne principale Suffixe: ane

Dans l'ordre alphabétique, si plusieurs ≠
Préfixes di-, tri-, tétra- si plusieurs
identiques

Toujours la + longue On numérote la chaîne pour minimiser la somme des indices

Chaînes latérales normales					
Formule semi-développée	Préfixe				
CH ₃ -	Méthyl-				
CH ₃ -CH ₂ -	Ethyl-				
CH ₃ -CH ₂ - CH ₂ -	Propyl-				
CH ₃ -(CH ₂) ₂ -CH ₂ -	Butyl-				
CH ₃ -(CH ₂) ₃ -CH ₂ -	Pentyl-				
CH ₃ -(CH ₂) ₄ -CH ₂ -	Hexyl-				
CH ₃ -(CH ₂) ₅ -CH ₂ -	Octyl-				
CH ₃ -(CH ₂) ₆ -CH ₂ -	Nonyl-				
CH ₃ -(CH ₂) ₇ -CH ₂ -	Décyl-				
CH ₃ -(CH ₂) ₈ -CH ₂ -	Undécyl- 29				

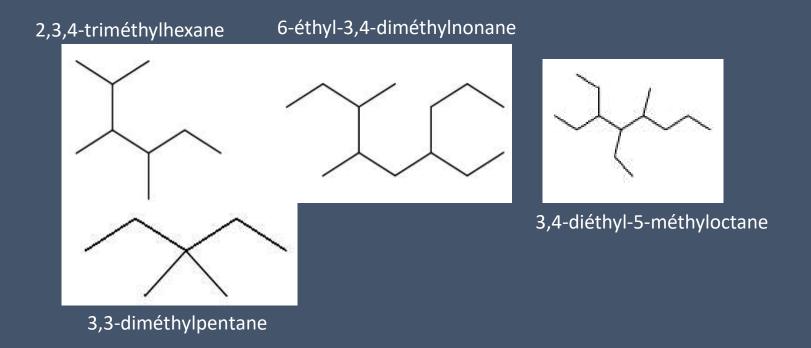
Nomenclature des hydrocarbures insaturés : (cyclo)alcènes et (cyclo)alcynes

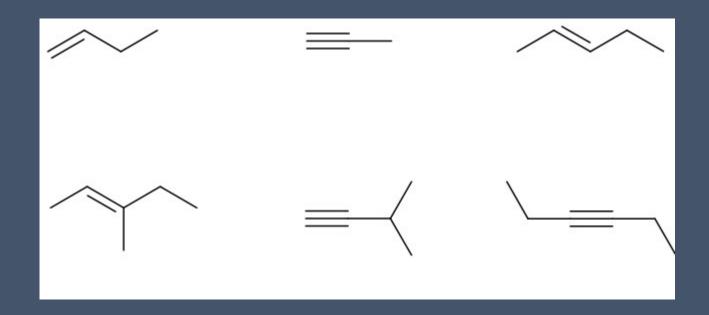
Préfixes éventuels
Cf. alcanes ramifiés

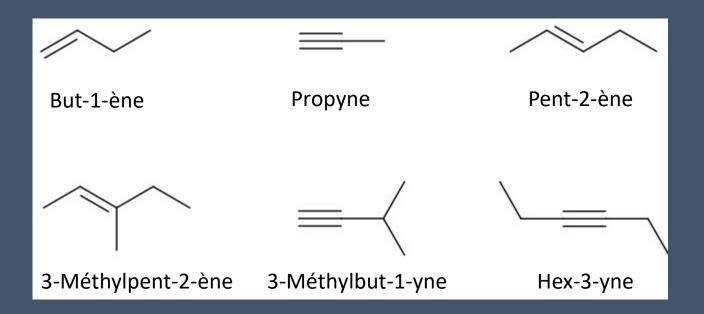
Corps du nom

Suffixe pour une double liaison : ène

Suffixe pour une triple liaison: yne


- Chaîne principale = la + longue qui comporte la/les liaison(s) multiple(s), s'il y a des ramifications
- On minimise l'indice pour la liaison insaturée

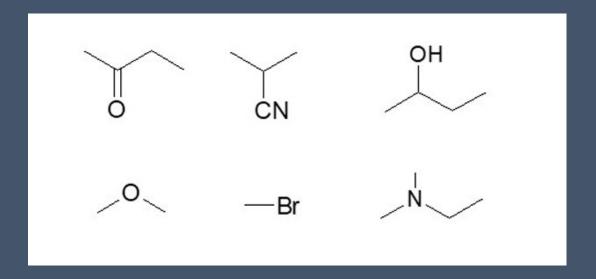

Nomenclature des hydrocarbures aromatiques


- Au moins 1 cycle
- Alternance formelle liaison C-C et liaison C=C pour chaque cycle
- Les principaux HC aromatiques sont des dérivés du benzène C₆H₆*

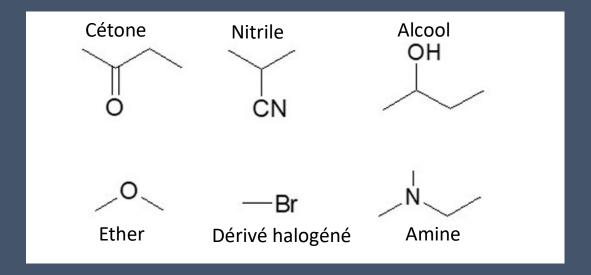
^{*} On utilise le préfixe phényl- pour le benzène en tant que ramification.

Les groupes fonctionnels comportant 1 seul hétéroatome

Remarques


- Atomes d'H liés aux hétéroatomes toujours indiqués.
- Radical R = chaîne hydrocarbonée à laquelle il manque un H.

Nom	Structure générale	Fonction	Exemple
Alcool	R -OH	- OH	ОН
Aldéhyde	O=\(\frac{H}{R}\)	-C-H O	~ ~
Amine	R-NH ₂	- NH ₂	\rightarrow \sim
Cétone	O R'	-C- O=-	\ =0
Dérivé halogéné	R-X (X = F, Cl, Br, I)	- X	\ \ -ō
Ether	R – O – R'	- O -	\downarrow
Nitrile	$R - C \equiv N$	- C ≡ N	CN


Les fonctions chimiques comportant plus d'un hétéroatome

Nom	Structure générale	Fonction	Exemple
Acide carboxylique ⁷	O=\(\frac{O}{R}\)	O	о <u></u> б
Amide	O=\(\begin{array}{c} \R' \\ \N'H \\ \R' \\ \\ \R' \\ \\ \R' \\ \\ \R' \\ \\ \R' \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	о н Н	>
Anhydride		0=0	
Ester	O R'	-c_o_	0
Halogénure d'acide	$ \begin{array}{c c} & O \\ & X \\ & (X = F, Cl, Br, I) \end{array} $	O X	O

1. Identifier les fonctions portées par les composés suivants :

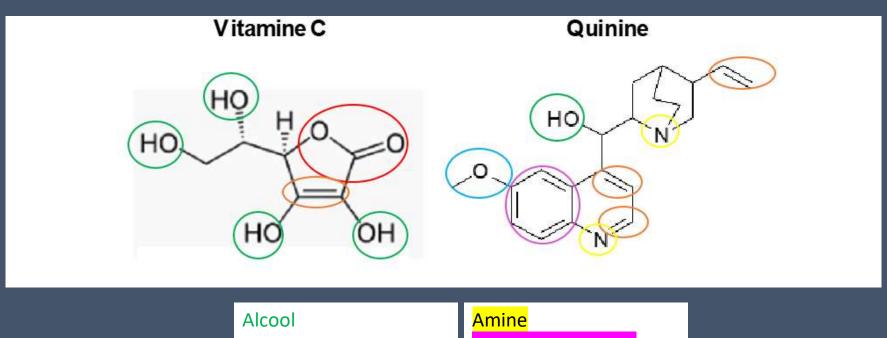
1. Identifier les fonctions portées par les composés suivants :

2. Identifier les fonctions portées par les composés suivants :

CH₃-COCI CH₃-COOH CH₃-CO₂-CH₃
(CH₃-CO)₂O CH₃-CO-NH-CH₃

2. Identifier les fonctions portées par les composés suivants :

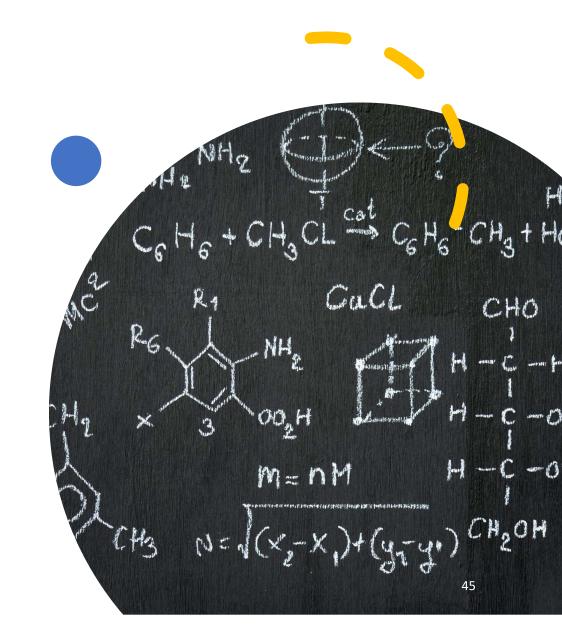
CH₃-COCl Halogénure d'acide


CH₃-COOH Acide carboxylique CH₃-CO₂-CH₃

(CH₃-CO)₂O Anhydride

CH3-CO-NH-CH3 Amide

3. Entourer et nommer les fonctions chimiques présentes dans la vitamine C et dans la quinine :


3. Entourer et nommer les fonctions chimiques présentes dans la vitamine C et dans la quinine :

Alcool Ester Ether Liaison double (alcène) Amine Noyau aromatique (benzène)

Exercices proposés

- Dans les **notes de cours** (fin du chapitre de nomenclature de CO):
 - -> exercices n° **2-3-4-6-7-8-10**
- Sur **HELMo Learn**
- -> exercices résolus sur la nomenclature des alcanes lin. et ramifiés (pdf)
- -> lien vers des **quiz** préconçus ou personnalisés

