
Introduction

LA CHIMIE

LA MATIÈRE: DESCRIPTIONS MACRO- ET MICROSCOPIQUE

LA MATIÈRE: STRUCTURE ATOMIQUE

La chimie

• Définition (Dictionnaire Larousse) :

« Science qui étudie les divers constituants de la matière, leurs propriétés, transformations et interactions. »

Principales subdivisions de la chimie

Chimie analytique

Techniques
d'analyse et de
séparation des
substances.

Chimie organique

= Étude des composés contenant du carbone.

Chimie générale (inorganique)

 Exploration des composés non organiques.

Chimie physique

 Analyse des principes physiques influençant les réactions chimiques.

Toutes ces subdivisions trouvent des applications dans les domaines d'activité du TLM (biochimie, chimie clinique, hématologie,...)

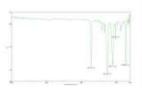
Un petit nouveau...

https://www.researchgate.net/figure/1-Les-douze-principes-de-la-chimie-verte fig1 334441223

Tous les domaines de la chimie

Raffineries et bioraffineries:

- Raffinerie pétrolière
- Bioraffineries: huiles, alcools, sucres
- Papeterie
- Procédés de fermentation et extractions
- Parfumerie
- Plastiques


- Extraction des minerais
- Transformation en métaux et alliages
- Matériaux semi-conducteurs, aimants

Matériaux:

Traitements de surfaces

Analytiques et caractérisations :

- Analyses et traitements des eaux, des terres
- Géologie et archéologie
- Restauration et conservation du patrimoine
- Criminologie et police judiciaire

Cosmétiques:

- Synthèse de principes actifs
- Formulation: maquillage, crèmes, soins
- Réglementation sanitaire
- Produits d'hygiènes : savon, dentifrices

Peintures et adhésifs:

- Vernis
- Peintures
- Colles

Plâtres, chaux, ciments, mortiers

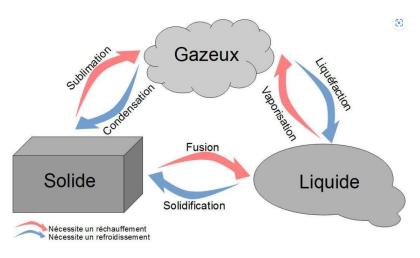
- Verre, argile, céramique, porcelaine
- Pigments, charges minérales, émail
- Plastiques et plasturgie
- Propriétés: optiques, magnétiques, ...

Pharmaceutique et agroalimentaire:

- Synthèse multi-étapes de produits actifs
- Galénique
- Tests cliniques
- Conservateurs

Energie:

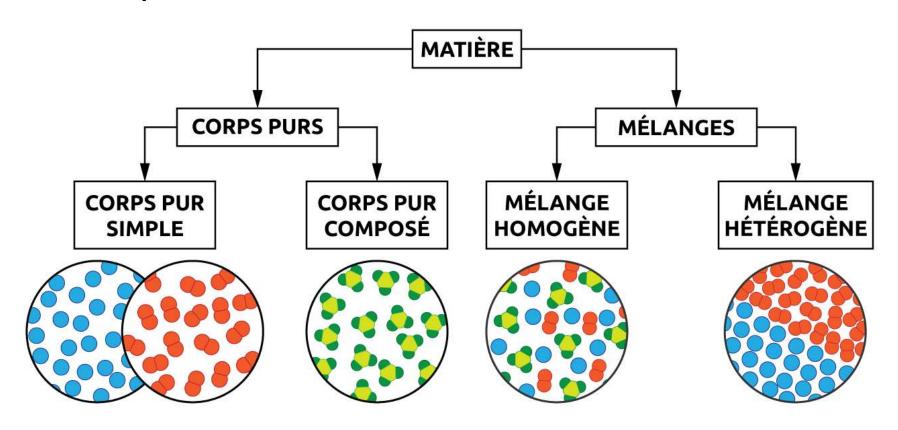
- Piles, batteries
- Carburants et biocarburants
- Pétrochimie et raffinerie pétrolière
- Nucléaire
- Centrale électrique



13

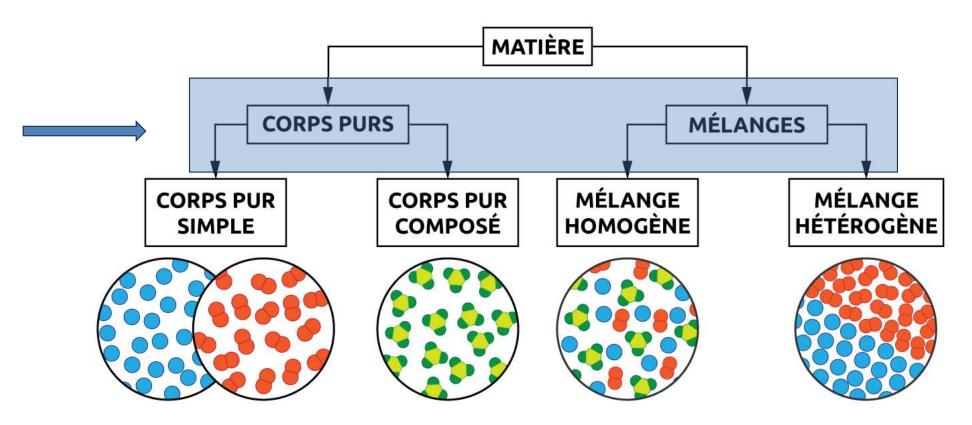
La matière occupe un espace et est caractérisée par une masse

Les trois états physiques de la matière

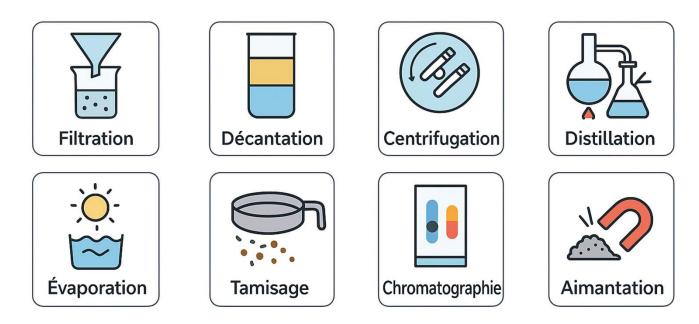


https://www.bernon.fr/index.php?page=constitution-de-la-mati%C3%A8re

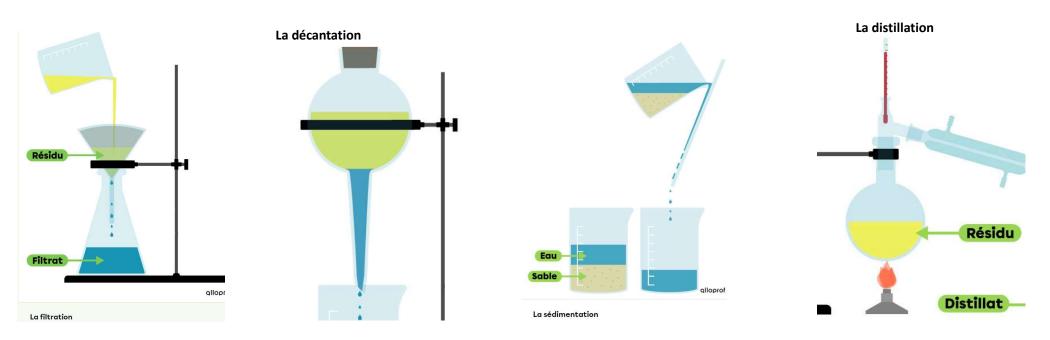
Propriétés physiques	Propriétés chimiques
Peuvent être observées ou mesurées sans modifier la nature de la substance	Ne peuvent être observées qu'en modifiant la nature de la substance
Décrivent l' aspect ou le comportement physique	Décrivent la réactivité et les transformations chimiques
Exemple : couleur, odeur, masse volumique, point de fusion, point d'ébullition, solubilité, dureté	Exemple : inflammabilité, oxydation, corrosion, réaction avec un acide, stabilité chimique
Restent inchangées lors d'un changement d'état (solide ↔ liquide ↔ gaz)	Changent quand une nouvelle substance se forme (nouveaux produits)
Testables par des méthodes physiques (mesure, observation)	Testables par des réactions chimiques (combustion, neutralisation, oxydation)


Substance	Propriétés physiques	Propriétés chimiques
Eau (H₂O)	Incolore, inodore, sans saveur ; point de fusion 0 °C ; point d'ébullition 100 °C ; masse volumique 1 g/cm³ ; solvant universel	Se décompose en H_2 et O_2 par électrolyse ; réagit avec certains oxydes métalliques pour former des bases ; peut agir comme acide ou base faible
Fer (Fe)	Métal gris argenté ; malléable et ductile ; point de fusion 1538°C ; masse volumique 7,87 g/cm³ ; conducteur thermique et électrique ; magnétique	S'oxyde pour former de la rouille ; réagit avec les acides en libérant H_2 ; brûle pour donner Fe_2O_3 ; réagit avec le chlore pour former $FeCl_3$
Éthanol (C₂H₅OH)	Liquide incolore ; odeur caractéristique ; point de fusion - 114°C ; point d'ébullition 78°C ; soluble dans l'eau	Inflammable ; peut être oxydé en acétaldéhyde puis acide acétique ; réagit avec les acides pour former des esters
Chlorure de sodium (NaCl)	Solide cristallin blanc ; soluble dans l'eau ; point de fusion 801°C ; masse volumique 2,16 g/cm³	Ne réagit pas facilement avec les acides ou les bases ; peut subir l'électrolyse pour produire du Cl₂ et du Na
Oxygène (O ₂)	Gaz incolore et inodore ; masse volumique 1,429 g/L ; point de fusion -218,8 °C ; point d'ébullition -183 °C	Très réactif ; favorise la combustion ; forme des oxydes avec presque tous les éléments
Dioxyde de carbone (CO₂)	Gaz incolore ; inodore ; soluble dans l'eau ; point de fusion - 78,5°C (sublimation)	Réagit avec l'eau pour former H₂CO₃ ; peut réagir avec les bases pour former des carbonates

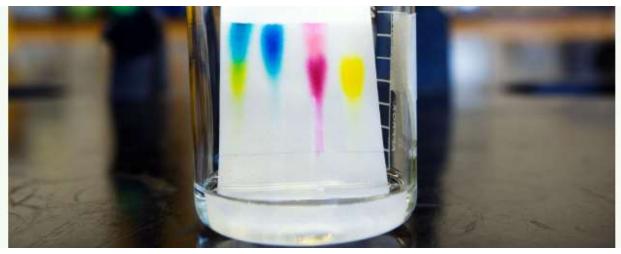
Description de la matière


		Définition	Exemples
	Corps purs	Substance constituée d'une seule espèce chimique	O₂, H₂O, NaCl
Matière	→ Corps simples	Corps purs formés d'un seul type d'atomes	O₂ (dioxygène), Fe (fer), H₂ (dihydrogène)
	→ Corps composés	Corps purs formés de plusieurs types d'atomes liés chimiquement	H₂O (eau), CO₂ (dioxyde de carbone), NaCl (sel)
	Mélanges	Association de plusieurs corps purs, proportions variables	Air, eau salée, sable + eau
	→ Mélange homogène	Constituants non distinguables à l'œil nu (aspect uniforme)	Air, eau + sucre, alliages
	→ Mélange hétérogène	Constituants distinguables à l'œil nu ou au microscope	Eau + sable, huile + eau, granite

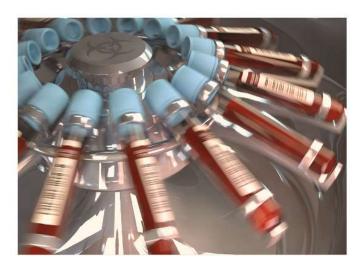
Description de la matière au niveau macroscopique


Séparation des constituants d'un mélange

méthodes physiques


Ce sont des transformations physiques : les substances gardent leur nature.

Séparation des constituants d'un mélange: méthodes physiques

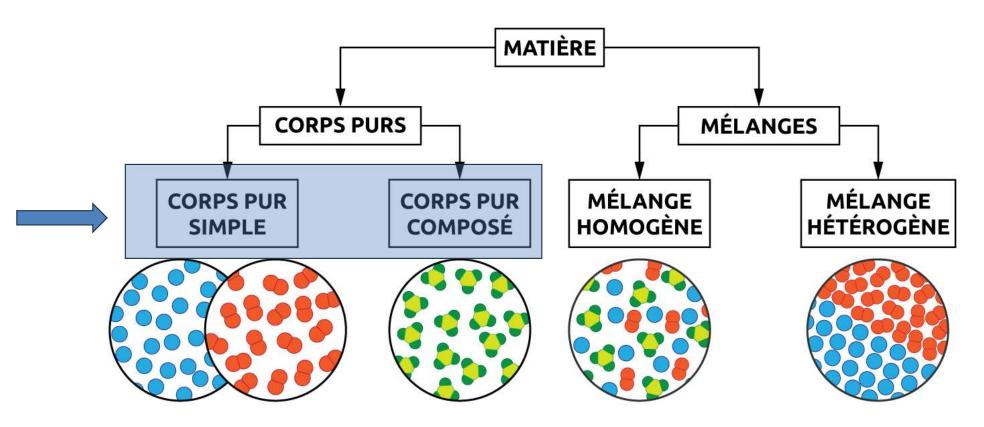


 $(\underline{https://www.alloprof.qc.ca/fr/eleves/bv/sciences/la-separation-des-melanges-s1049})$

Séparation des constituants d'un mélange: méthodes physiques

La chromatographie sur couche mince

La centrifugation


Ktsdesign, Shutterstock.com

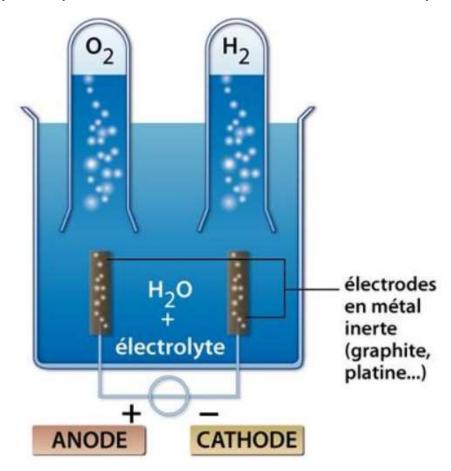
La séparation des globules rouges et du pl sanguin

Roman Zaiets, Shutterstock.com

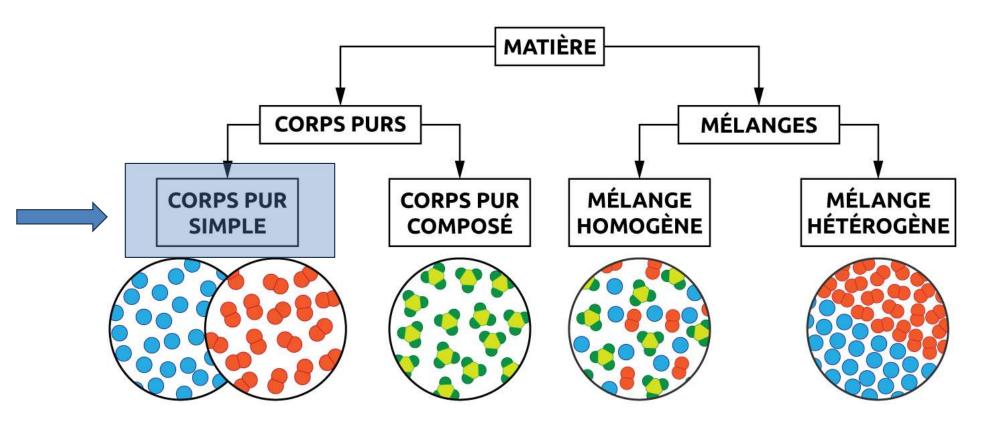
Description de la matière au niveau microscopique

Description de la matière au niveau microscopique

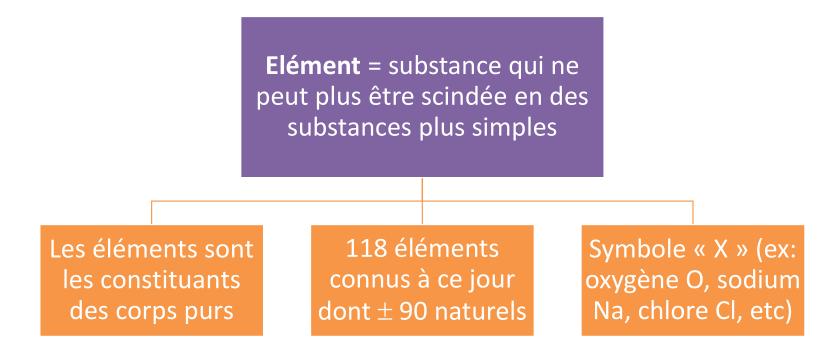
Subdivision d'un corps pur par des méthodes <u>physiques</u> Subdivision d'une molécule par des méthodes chimiques

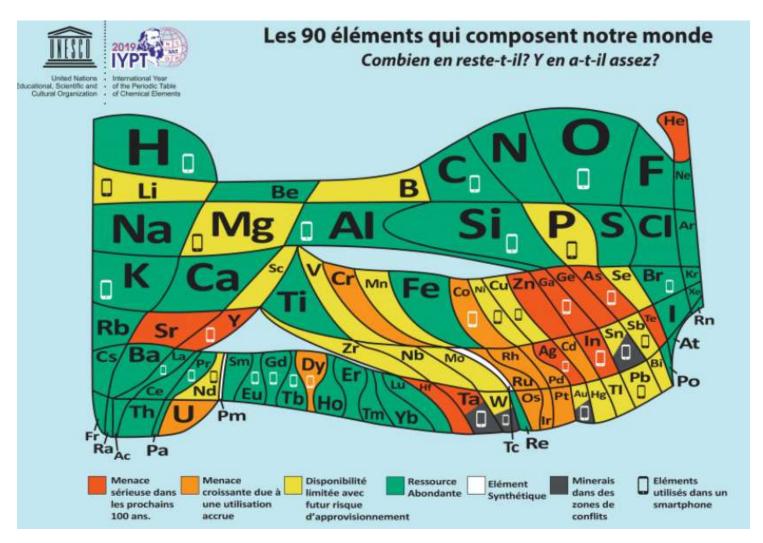

Molécule = la plus petite unité de corps pur qui maintient les propriétés du corps pur de départ

Atome = limite ultime de la subdivision chimique d'un corps pur


Tableau des méthodes chimiques de séparation des corps purs

Méthode chimique	Principe	Exemple de corps pur	Produits obtenus	Icône / visuel
Électrolyse	Passage d'un courant électrique pour séparer les éléments	H₂O, NaCl	H ₂ + O ₂ ; Na + Cl ₂	4
Décomposition thermique	Chauffage d'un corps pur pour le décomposer en produits plus simples	CuCO₃, H₂SO₄	CuO + CO ₂ ; SO ₃ + H ₂ O	.
Réaction chimique avec réactif	Ajouter une substance qui réagit pour produire des constituants séparables	$Fe_2O_3 + CO \rightarrow Fe + CO_2$	Fe + CO ₂	
Décomposition catalytique	Utilisation d'un catalyseur pour accélérer la décomposition	H_2O_2	$H_2O + O_2$	
Photolyse	Décomposition par lumière (UV)	AgCl	Ag + Cl ₂	₹ }

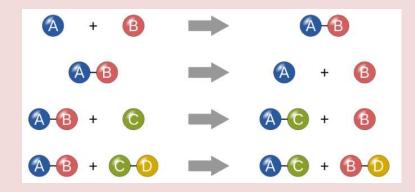

Exemple pratique de séparation des constituants d'un corps pur par une méthode chimique



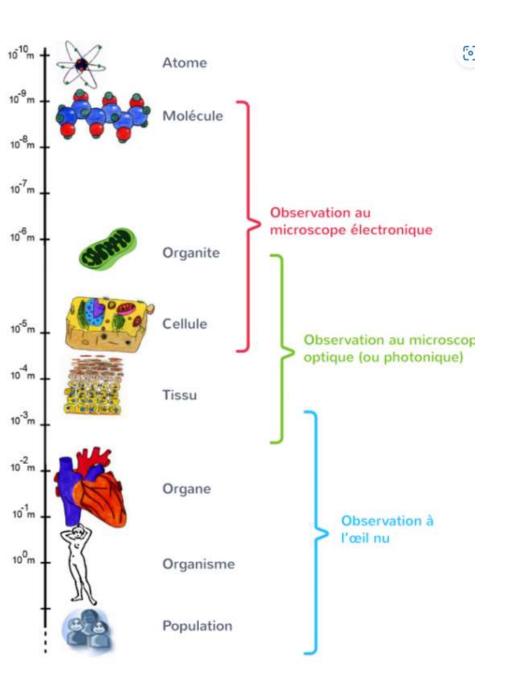
Description de la matière au niveau microscopique

Définition:

https://explore.psl.eu/fr/le-magazine/focus/un-monde-delements-chimiques-enjeux-societaux-du-tableau-periodique


Premier modèle atomique de la matière (J. Dalton 1766-1844)

Chaque élément est composé de minuscules atomes indivisibles ;


Les atomes d'un élément sont tous semblables mais ils sont différents des atomes d'autres éléments ;

Les substances composées sont constituées de groupes d'atomes appelés molécules ;

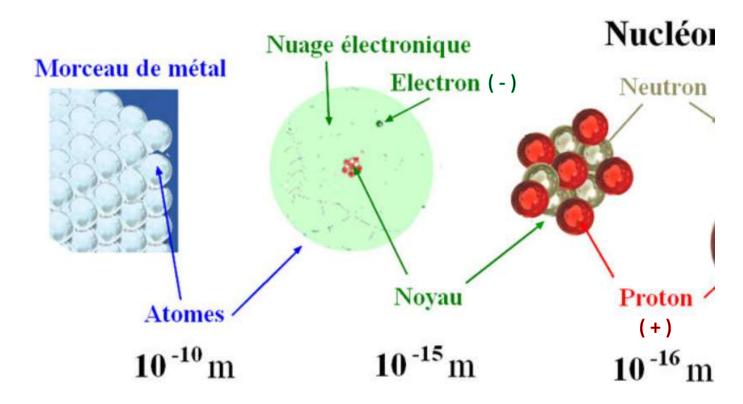
Lors d'une <u>réaction chimique</u>, les atomes vont s'unir, se séparer ou se réarranger pour former de nouvelles molécules

http://www.vulgarisation-scientifique.com/wiki/Dictionnaire/R%C3%A9action_chimique

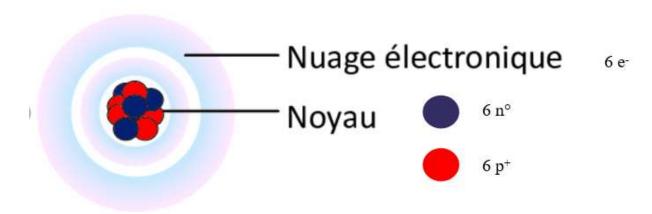
Dimensions atomiques

http://thibault.svt.free.fr/index.php/secondes/cours-de-svt-2nde/chapitre-1-decrire-les-etres-vivants-a-differentes-echelles/

23

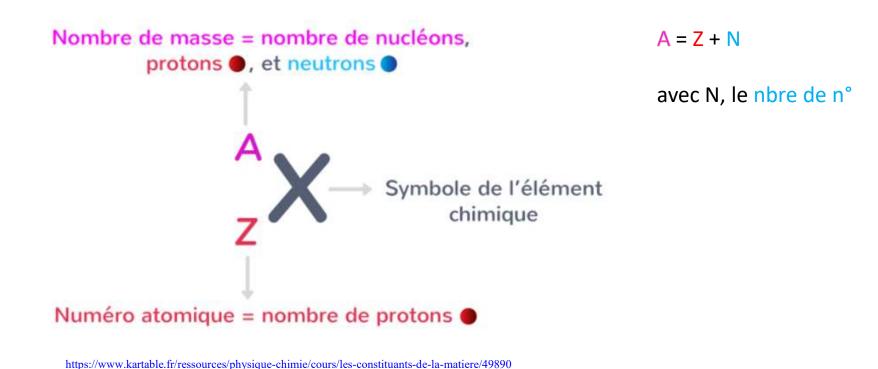

Les particules élémentaires

		Nucléons
4	Ļ	


Particule	Electron	Proton	Neutron
Symbole	e-	p+	n°
Charge relative	-1	+1	0
Masse	~ 0,00091.10 ⁻²⁴ g	~ 1,673.10 ⁻²⁴ g	~ 1,675.10 ⁻²⁴ g
Localisation	Nuages électroniques	Noyau	Noyau

- Un e- est 1800 fois plus léger qu'un p+ ou qu'un n°
- Atome électriquement neutre => nbre de p+ = nbre d'e-

Structure de l'atome


Considérons l'élément carbone, de symbole chimique C

1 : Représentation de l'atome de carbone, composé d'un noyau de six neutrons et six protons. Les six électrons sont représentés par des probabilités de présence par le biais de nuages électroniques.

https://www.researchgate.net/figure/Representation-de-latome-de-carbone-compose-dun-noyau-de-six-neutrons-et-six_fig1_275343642

Définitions

Notion d'ion (= particule chargée électriquement)

- Atome électriquement neutre mais...
- ➤ il peut perdre un ou plusieurs e- => cation (ion positif)
- ➤ il peut gagner un ou plusieurs e- => anion (ion négatif)

Question

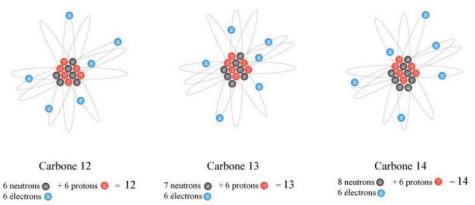
Complétez le tableau suivant :

Elément	Notation symbolique	Nbr. p+	Nbr. <u>n</u> 0	Nbr. e⁻	Nombre de masse
	³⁷ Cl				
Zinc		30			65
			20	20	
Lanthane			80		

Elément	Notation symbolique	Nbre p+	Nbre n°	Nbre e-	Nombre de masse A
Chlore	³⁷ ₁₇ Cl	17	20	17	37
Zinc	$^{65}_{30}Zn$	30	35	30	65
Calcium	⁴⁰ ₂₀ Ca	20	20	20	40
Lanthane	¹³⁷ ₅₇ La	57	80	57	137

Réponse

L'unité de masse atomique (u.m.a.)

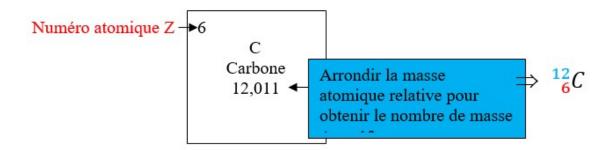

- Unité de masse adaptée à la taille des atomes ($\sim 10^{-24}$ g)
- Par convention:

1 u.m.a. = $\frac{1}{12}$ · masse ${}^{12}_{6}C$ => un atome de ${}^{12}_{6}C$ a une masse de 12 u.m.a.

1 u.m.a \cong masse d'un p+ \cong masse d'un n° I u.m.a. = 1,6605.10⁻²⁴ g On parle de masses atomiques <u>relatives</u> : Ar (en u.m.a.)

Notion d'isotope

- Atome de carbone le plus courant (99%) dans la nature: ${}^{12}_{6}C$
- Autres atomes de carbone (1%) :
 - \triangleright à 7 neutrons ${}^{13}_{6}C$
 - \triangleright à 8 neutrons $^{14}_{6}C$



http://carbon14.univ-lyon1.fr/SPIP-v3/spip/IMG/pdf/figure 1.pdf

⇒ Les isotopes d'un même élément ont le même nbre de p+ mais un nbre différent de n°

Masse atomique relative des éléments du tableau périodique

- Symbole : Ar
- Unité : u.m.a.
- Calcul : moyenne des masses atomiques des isotopes constituant l'élément
- => plus un isotope est courant (fréquent, abondant) dans la nature, plus sa masse contribue dans le calcul de Ar

Question

• Les noyaux de quatre nucléides A, B, C et D sont décrits ci-dessous. Parmi ceux-ci, y a-t-il des isotopes d'un même élément ? Si oui, indiquez-en la notation en utilisant le symbole de l'élément concerné.

	A	В	С	D
Nombre de neutrons	26	25	27	27
Nombre de protons	21	22	22	20
Nombre de masse	47	47	49	47

Réponse

	$^{47}_{21}A$	${}^{47}_{22}B$	⁴⁹ ₂₂ C	$^{47}_{20}D$
	A	В	С	D
Nombre de neutrons	26	25	27	27
Nombre de protons	21	22	22	20
Nombre de masse	47	47	49	47

B et C sont les isotopes d'un élément de numéro atomique Z=22 ; le titane Ti