Sainte-Julienne *0.923	Section Biomed Bloc1 – Q1 UE4	Date : 15/10/19
Année académique 2019-2020		
Chimie élémentaire	Enseignants : MF Ghuysen, B. Quinting, S. Tollenaere	Forme A

INTERROGATION DE CHIMIE ÉLÉMENTAIRE : MASSE ATOMIQUE

1. 64mL d'un composé liquide pur de masse volumique = 0.923g/ml contient 0.444moles de ce composé. Calculer la masse molaire de ce composé.

$$S = \frac{m}{V} = 0,323$$
 Si $V = 6uml = 0,923464$ /5

 $m = \frac{m}{M} = 50,062 = 0,444 \text{ mol}$
 $M = \frac{50,062}{0,444} = 733 \text{ g mol}^{-2}$

2. A l'aide des masses atomiques du tableau périodique, calculer les pourcentages massiques du phosphore et de l'oxygène dans l'hémipentoxyde de phosphore.

M
$$P_2O_5 = 2 \times 30.05 + 5 \times 15.053 = 141.935$$
 g mol-1

1 mol $P_2O_5 = 2 \times 30.05 + 5 \times 15.053 = 141.935$ g mol-1

2 mol $P_2O_5 = 2 \times 30.05 = 61.049$.

5 mol $P_2O_5 = 2 \times 30.05 = 61.049$.

5 mol $P_2O_5 = 2 \times 30.05 = 61.049$.

6 mosse $P_2O_5 = 61.049$.

6 mosse $P_2O_5 = 61.049$.

6 mosse $P_2O_5 = 61.041.935 = 43.6%$.

6 mosse $P_2O_5 = 61.041.935 = 43.6%$.

3. Déterminer la formule moléculaire et nommer la molécule contenant du H (3.086%), P (31.60%) et de l'oxygène, et dont la masse molaire vaut 97.99g/mole.

1 mal
$$H \times P = 2$$
 (5) $17,93 \text{ g}$. (5)

H: $\frac{3.086}{100} \times 97,99 = 3 \text{ g}$ of $H = 3 = 3 \text{ mal}$

P: $\frac{31.6}{100} \times 97,99 = 30,96 \text{ g}$ of $P = 30,96 \text{ r}$ mul

0: $\frac{31.6}{100} \times 97,99 = 30,96 \text{ g}$ of $P = 30,96 \text{ r}$ mul

0: $\frac{31.6 \times 97,99}{100} = 30,96 \text{ g}$ of $P = 30,96 \text{ r}$ mul

0: $\frac{31.6 \times 97,99}{100} = 30,96 \text{ g}$ of $P = 30,96 \text{ r}$ mul

4. Calculer le nombre d'atomes de Al, Cl et O dans 1g de chlorite d'aluminium.

5. Combien de moles d'hydrogène y a-t-il dans 54kg d'hydrogénosulfite de

potassium?
$$KHSO3 = 120,1 \text{ g mol}^{-1}$$
 $M = 54.1000 = 450 \text{ mol} \cdot \text{ole } \text{kHSO}_3$
 $= M_H$

/5

6. Combien de moles et combien de grammes d'ammoniac y a-t-il dans 500mL de ce gaz à 15°C et 1 atm?

NOM ET PRÉNOM:

NOM:

$$PV = MRT$$
 $M = P.V = 1.05 = 0.0712 \text{ mol}$
 $RT = 0.082 288 /5$

Données:

 $R = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$

R = 0.082 | atm/ k mol

Nombre d'Avogadro : 6.02 10²³